Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Emerg Radiol ; 30(6): 711-717, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857761

RESUMO

PURPOSE: Fournier's gangrene (FG), a rapidly progressive necrotizing soft tissue infection of the external genitalia and perineum, necessitates urgent surgical debridement. The time to surgery effect of preoperative computed tomography (CT) in managing this condition is yet to be fully explored. The purpose of this study was to assess whether obtaining a preoperative CT in patients with FG impacts the time to surgical intervention. METHODS: This was a single-center retrospective study of patients who underwent CT prior to surgical debridement of FG during a 9-year period vs patients who did not undergo CT. In 76 patients (male = 39, mean age = 51.8), 38 patients with FG received a preoperative CT, and 38 patients with FG did not receive CT prior to surgical debridement. Time to operating room and outcome metrics were compared between CT and non-CT groups. RESULTS: The time from hospital presentation to surgical intervention was not significantly different between patients who underwent CT and those who did not (6.65 ± 3.71 vs 5.73 ± 4.33 h, p = 0.37). There were also no significant differences in cost ($130,000 ± $102,000 vs $142,000 ± $152,000, p = 0.37), mortality (8 vs 7, p = 1), duration of hospital stay (15.5 ± 15 vs 15.7 ± 11.6 days, p = 0.95), average intensive care unit stay (5.82 ± 5.38 days vs 6.97 ± 8.58 days, p = 0.48), and APACHE score (12 ± 4.65 vs 13.9 ± 5.6, p =0.12). CONCLUSION: Obtaining a preoperative CT did not delay surgical intervention in patients with FG.


Assuntos
Gangrena de Fournier , Humanos , Masculino , Pessoa de Meia-Idade , Gangrena de Fournier/diagnóstico por imagem , Gangrena de Fournier/cirurgia , Estudos Retrospectivos , Desbridamento/métodos , Períneo , Tomografia
6.
Radiographics ; 41(3): E73-E74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33939547

Assuntos
Calcinose , Fibrose , Humanos
7.
Mol Biol Cell ; 28(13): 1713-1723, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28663287

RESUMO

CARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem. Many cellular functions of CARMILs require the interaction with CP; however, a more surprising result is that the cellular function of CP in cells appears to require binding to a CARMIL or another protein with a CPI motif, suggesting that CPI-motif proteins target CP and modulate its actin-capping activity. Vertebrates have three highly conserved genes and expressed isoforms of CARMIL with distinct and overlapping localizations and functions in cells. Various domains of these CARMIL isoforms interact with plasma membranes, vimentin intermediate filaments, SH3-containing class I myosins, the dual-GEF Trio, and other adaptors and signaling molecules. These biochemical properties suggest that CARMILs play a variety of membrane-associated functions related to actin assembly and signaling. CARMIL mutations and variants have been implicated in several human diseases. We focus on roles for CARMILs in signaling in addition to their function as regulators of CP and actin.


Assuntos
Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Humanos , Filamentos Intermediários/metabolismo , Modelos Moleculares , Miosinas/metabolismo , Ligação Proteica , Isoformas de Proteínas , Transdução de Sinais , Vimentina/metabolismo
8.
J Biol Chem ; 291(3): 1076-91, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26578515

RESUMO

CARMILs regulate capping protein (CP), a critical determinant of actin assembly and actin-based cell motility. Vertebrates have three conserved CARMIL genes with distinct functions. In migrating cells, CARMIL2 is important for cell polarity, lamellipodial assembly, ruffling, and macropinocytosis. In cells, CARMIL2 localizes with a distinctive dual pattern to vimentin intermediate filaments and to membranes at leading edges and macropinosomes. The mechanism by which CARMIL2 localizes to membranes has not been defined. Here, we report that CARMIL2 has a conserved membrane-binding domain composed of basic and hydrophobic residues, which is necessary and sufficient for membrane localization, based on expression studies in cells and on direct binding of purified protein to lipids. Most important, we find that the membrane-binding domain is necessary for CARMIL2 to function in cells, based on rescue expression with a set of biochemically defined mutants. CARMIL1 and CARMIL3 contain similar membrane-binding domains, based on sequence analysis and on experiments, but other CPI motif proteins, such as CD2AP, do not. Based on these results, we propose a model in which the membrane-binding domain of CARMIL2 tethers this multidomain protein to the membrane, where it links dynamic vimentin filaments with regulation of actin assembly via CP.


Assuntos
Membrana Celular/metabolismo , Filamentos Intermediários/metabolismo , Proteínas dos Microfilamentos/metabolismo , Podossomos/metabolismo , Vimentina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Movimento Celular , Sequência Conservada , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Bases de Dados de Proteínas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Mutação , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
9.
Cell Syst ; 1(5): 315-325, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26623441

RESUMO

Random fluctuations in gene expression lead to wide cell-to-cell differences in RNA and protein counts. Most efforts to understand stochastic gene expression focus on local (intrinisic) fluctuations, which have an exact theoretical representation. However, no framework exists to model global (extrinsic) mechanisms of stochasticity. We address this problem by dissecting the sources of stochasticity that influence the expression of a yeast heat shock gene, SSA1. Our observations suggest that extrinsic stochasticity does not influence every step of gene expression, but rather arises specifically from cell-to-cell differences in the propensity to transcribe RNA. This led us to propose a framework for stochastic gene expression where transcription rates vary globally in combination with local, gene-specific fluctuations in all steps of gene expression. The proposed model better explains total expression stochasticity than the prevailing ON-OFF model and offers transcription as the specific mechanism underlying correlated fluctuations in gene expression.

10.
Mol Biol Cell ; 26(25): 4577-88, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26466680

RESUMO

Cancer cell migration requires the regulation of actin networks at protrusions associated with invadopodia and other leading edges. Carcinomas become invasive after undergoing an epithelial-mesenchymal transition characterized by the appearance of vimentin filaments. While vimentin expression correlates with cell migration, the molecular connections between vimentin- and actin-based membrane protrusions are not understood. We report here that CARMIL2 (capping protein, Arp2/3, myosin-I linker 2) provides such a molecular link. CARMIL2 localizes to vimentin, regulates actin capping protein (CP), and binds to membranes. CARMIL2 is necessary for invadopodia formation, as well as cell polarity, lamellipodial assembly, membrane ruffling, macropinocytosis, and collective cell migration. Using point mutants and chimeras with defined biochemical and cellular properties, we discovered that localization to vimentin and CP binding are both essential for the function of CARMIL2 in cells. On the basis of these results, we propose a model in which dynamic vimentin filaments target CARMIL2 to critical membrane-associated locations, where CARMIL2 regulates CP, and thus actin assembly, to create cell protrusions.


Assuntos
Proteínas de Capeamento de Actina/genética , Movimento Celular/genética , Proteínas dos Microfilamentos/genética , Neoplasias/genética , Vimentina/genética , Proteínas de Capeamento de Actina/metabolismo , Actinas/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Extensões da Superfície Celular/genética , Transição Epitelial-Mesenquimal , Humanos , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Proteínas dos Microfilamentos/metabolismo , Podossomos/genética , Podossomos/patologia , Vimentina/metabolismo
11.
J Clin Invest ; 118(6): 2281-90, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18483620

RESUMO

Niemann-Pick C1 (NPC1) is a key participant in cellular cholesterol trafficking. Loss of NPC1 function leads to defective suppression of SREBP-dependent gene expression and failure to appropriately activate liver X receptor-mediated (LXR-mediated) pathways, ultimately resulting in intracellular cholesterol accumulation. To determine whether NPC1 contributes to regulation of macrophage sterol homeostasis in vivo, we examined the effect of NPC1 deletion in BM-derived cells on atherosclerotic lesion development in the Ldlr-/- mouse model of atherosclerosis. High-fat diet-fed chimeric Npc1-/- mice reconstituted with Ldlr-/-Npc1-/- macrophages exhibited accelerated atherosclerosis despite lower serum cholesterol compared with mice reconstituted with wild-type macrophages. The discordance between the low serum lipoprotein levels and the presence of aortic atherosclerosis suggested that intrinsic alterations in macrophage sterol metabolism in the chimeric Npc1-/- mice played a greater role in atherosclerotic lesion formation than did serum lipoprotein levels. Macrophages from chimeric Npc1-/- mice showed decreased synthesis of 27-hydroxycholesterol (27-HC), an endogenous LXR ligand; decreased expression of LXR-regulated cholesterol transporters; and impaired cholesterol efflux. Lower 27-HC levels were associated with elevated cholesterol oxidation products in macrophages and plasma of chimeric Npc1-/- mice and with increased oxidative stress. Our results demonstrate that NPC1 serves an atheroprotective role in mice through regulation of LXR-dependent cholesterol efflux and mitigation of cholesterol-induced oxidative stress in macrophages.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Proteínas/genética , Proteínas/fisiologia , Ração Animal , Animais , Aorta/patologia , Transporte Biológico , Colesterol/sangue , Hidroxicolesteróis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Proteína C1 de Niemann-Pick , Estresse Oxidativo , Esteróis/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...